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Abstract. We explore the task of determining the geographic location
of photos on Flickr, using combined evidence from Naive Bayes classi-
fiers that are trained at different spatial resolutions. In particular, we
estimate the location of Flickr photos, based on their tags, at four differ-
ent scales, ranging from a city-level granularity to fine-grained intra-city
areas. Using Dempster-Shafer’s evidence theory, we combine the output
of the different classifiers into a single mass assignment. We demonstrate
experimentally that the induced belief and plausibility measures are use-
ful to determine whether there is sufficient evidence to classify the photo
at a given granularity. Thus an adaptive method is obtained, by which
photos are georeferenced at the most appropriate resolution.

1 Introduction

An increasing number of web systems allow users to organize and share resources,
such as photos, videos, or scientific papers. The predominant way of organizing
such resources is by the use of short textual descriptions called tags. These tags
are added by users in an uncontrolled way, without the need for any semantic
resources. Nonetheless, due to the wide availability of such tags, statistically an-
alyzing tag distributions has proven to be a successful way of obtaining (shallow)
semantic information in an automated way [13].

Considering photo sharing websites such as Flickr3 or Panoramio4, the most
important kind of metadata is arguably the location where a photo was taken.
Accordingly, these websites typically allow to attach explicit geographical co-
ordinates to a photo, in addition to tag-based descriptions of its content. This
is important for at least two reasons. First, it allows to put photos on a map,
providing an interesting addition to e.g. Google Maps5, and allowing users to
quickly retrieve photos that were taken in a particular region [1, 4, 11]. Second,
by looking at correlations between tag occurrences and locations, it becomes
possible to find approximate boundaries of geographic regions [8]. This is par-
ticularly important for vernacular (i.e. informal) place names, which have no
3 http://www.flickr.com/
4 http://www.panoramio.com/
5 http://maps.google.com
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official boundaries that could be retrieved from gazetteers or other geographic
resources. As a consequence, a thorough analysis of Flickr tags may result in
rich geographic models that can be used to support geographically informed
web search engines.

The question remains of how the location of a photo could be acquired.
Certain cameras have a built-in GPS, in which case the exact coordinates are
obtained automatically. In most cases, however, users need to manually specify
where a photo was taken. Because this puts an extra burden on the user, without
any immediate benefit, only a small minority of the users go through this step.
Another approach is taken by Suggestify6, a web application which allows users
to suggest the location of a photo of another Flickr user, which she can then
choose to accept or refuse. Nonetheless, for the vast majority of all photos on
Flickr and Panoramio, the location is not known.

To solve this problem, we may attempt to derive the approximate location
of a photo automatically, by comparing its tags with the tags of photos whose
exact location is known [4, 11, 14]. These approximate locations may be sufficient
to put the photo on a map (at a certain resolution), or to help determine the
approximate boundaries of a vernacular region. Alternatively, by establishing
the area in which the photo was taken, we may also assist users that are willing
to manually specify the exact location, by centering a map on the area that
was found, and zooming in at an appropriate level. In each case, it is important
not only to find a location that is approximately correct, but also to provide a
reliable estimate of how accurate that location is (e.g. street-level, neighborhood-
level, city-level, regional level, ...). For some photos, we can easily find a very
precise location (e.g. a photo tagged “Eiffel tower”), while for other photos we
cannot even indicate in which country it was taken, by only looking at its tags
(e.g. a photo tagged “birthday party”). Thus it is of interest to study adaptive
techniques that provide reliable estimates at an appropriate resolution, or admit
that no reliable location could be established.

To georeference Flickr photos (i.e. to assign a location), in previous work
[14] we have proposed to discretize space by clustering the photos from some
training set, and then train a Naive Bayes classifier to find the most appropriate
cluster for previously unseen photos. Different resolutions can then be considered
by repeating the whole process for more or less fine-grained clusterings, i.e. by
adopting a larger or smaller number of clusters. Thus we obtain a series of
different classifiers, operating at different levels of resolution. In this way, for a
given photo, the most appropriate resolution can be chosen by looking at the
confidence each of the classifiers has in its respective outcome.

In this paper, we look at how the results of these different classifiers can be
combined to find the most appropriate location and resolution. In particular,
we experimentally investigate the use of Dempster-Shafer theory, which natu-
rally allows to combine evidence from sources that operate at different levels of
granularity. Our hypothesis in using Dempster-Shafer theory is that agreement
between the classifiers is a strong indicator of the correctness of the location that

6 http://suggestify.appspot.com/
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was found. For instance, if classifier C1 finds locations at the neighborhood-level
and C2 at the city level, and the neighborhood that was found by C1 is not from
the city that was found by C2, our confidence that the neighborhood is correct
should be low, regardless of the confidence of classifier C1 in its choice.

The remainder of this paper is structured as follows. Section 2 summarizes
our methodology in obtaining training and test data from Flickr. We also explain
how we have clustered the images in the training set, and which preprocessing
techniques were applied. Then in Section 3 we discuss the details of our pro-
posed method. We briefly recall how a Naive Bayes classifier can be trained
to find plausible areas where a photo might be located, at a fixed resolution.
Subsequently we provide details on how Dempster-Shafer theory is applied to
combine the classifiers that were trained at different resolutions. In Section 4, we
present our experimental results, demonstrating substantial improvements over
a baseline system. Finally, related work is discussed in Section 5.

2 Methodology

To obtain suitable training and test data, we composed a list of 55 large Eu-
ropean cities. These cities were selected by intersecting the set of the 100 most
densely populated European cities7 with the set of the 160 most important Eu-
ropean cities for tourism8. This choice was motivated by the intuition that a
high population should ensure that allocating photos to locations is non-trivial
(as opposed to villages where all activity is centered around a small area), while
tourist activity should ensure that a sufficient number of photos is available on
Flickr. For each georeferenced photo in these cities, we collected the correspond-
ing tags and coordinates using the Flickr API, leading to a total of 3738072
photos. In addition to the coordinates themselves, Flickr provides information
about the accuracy of coordinates as a number between 1 (world-level) and 16
(street level). From our initial set of photos, we removed those photos whose
coordinates had an accuracy of 13 or less, to ensure that all coordinates were
meaningful w.r.t. within-city location. Furthermore, we removed photos whose
tag set and user name was identical to a photo that is already in our collection
(to reduce the impact of bulk uploads [11]). After these two filtering steps, a set
of 1029761 photos remained from 54 cities (no photos from Bremen had coor-
dinates whose accuracy was above 13), which was split into 686193 photos for
training (≈ 66%) and 343568 photos for testing (≈ 33%). In separating training
data from test data, we ensured that all photos from the same user were either in
the training set, or in the test set (to avoid an unfair exploitation of user-specific
tags).

We then divided the 54 remaining cities into a set of disjoint areas that will
serve as classification labels. The areas themselves were obtained by clustering
the locations of the photos in the training set using the k-medoids algorithm with
geodesic distance. Below, we consider four different resolutions, corresponding to
7 http://www.nga.mil
8 http://www.visiteuropeancities.info
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the city level (in which case there are 54 areas, each corresponding to an entire
city), as well as the result of clustering all photos in 250, 500, or 1000 clusters. In
each case, we chose the number of clusters per city proportional to the number of
georeferenced photos we had available for that city (in the training set), with the
exception that every city should contain at least one cluster centre. As a result,
cities for which we had only few georeferenced photos were divided in areas of a
larger scale. This conforms to our intuition that we should try to be precise in
estimating the location of a photo only when sufficient information is available
for making that decision. In addition, whenever the number of photos in a given
cluster dropped below 50, after an iteration of the k-medoids algorithm, that
cluster was eliminated and the associated photos added to the nearest remaining
cluster. The actual number of areas after the clustering algorithm had converged
was respectively 54, 217, 401 and 677.

For efficiency, and to increase the robustness of the approach, we removed
all tags that were used by 2 users or less. Next, we applied χ2 feature selection
to eliminate tags that are not indicative of a particular area. In particular, the
vocabulary V that was used for classification was obtained by taking for each
area a those 25 tags whose χ2 value was highest. This led to a total number
of 1269, 4701, 8452 and 13727 distinct tags, respectively in the case where the
initial number of clusters k was 54, 250, 500 and 1000.

3 Georeferencing Images

3.1 Naive Bayes Classification

Let A be a set of (disjoint) areas, obtained by clustering the locations of the
images in our training set. For each area a ∈ A, we write Xa to denote the set
of images from our training set that were taken in area a. Given a previously
unseen image x, we try to determine in which area x was most likely taken
by comparing its tags with those of the images in the training set. In [14],
we proposed a (multinomial) Naive Bayes classifier to this end, which has the
advantage of being simple, efficient, and robust. An additional advantage, which
will be crucial for combining classifiers that operate at different resolutions, is
the fact that Naive Bayes produces probabilities, in contrast to e.g. support
vector machines. Specifically, we assume that an image x is represented as its
set of tags. Using Bayes’ rule, and assuming that occurrences of different tags
are independent, the probability P (a|x) that image x was taken in area a is
proportional to

P (a|x) ∝ P (a) ·
∏
t∈x

P (t|a) (1)

Using a multinomial language model with Laplace smoothing [18], the probabil-
ity P (t|a) is estimated as

P (t|a) =
Nt + 1(∑

y∈Xa
|y|
)

+ |V |
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whereNt is the number of images in area a containing tag t,
∑

y∈Xa
|y| is the total

number of tag occurrences over all images in area a, and V is the vocabulary, as
before. Note that this technique of estimating P (t|a) originates from Laplace’s
rule of succession. The maximum likelihood estimation NtP

y∈Xa
|y| would not be

useful here, as it would imply P (a|x) = 0 as soon as x has one tag which does
not occur with any image of the training set that is located in area a. The prior
probability P (a) of area a, on the other hand, can reliably be estimated using
the maximum likelihood method:

P (a) =
|Xa|∑

b∈A |Xb|

Finally note that the actual value of P (a|x), for all a ∈ A, is found from (1)
after normalization.

3.2 Combining classifiers using Dempster-Shafer theory

Motivation The fact that areas are spatially distributed should intuitively
help to assign photos to areas more accurately. For example, assume that A =
{a, b, c, d} and that the Naive Bayes classifier finds for a given photo x that that
P (a|x) = 0.3, P (b|x) = 0.25, P (c|x) = 0.25 and P (d|x) = 0.2. Now assume
furthermore that b, c, and d are adjacent neighborhoods, while a is located in a
different city. Then in fact, the correct location is more likely to be near areas
{b, c, d} than near a. Naive Bayes in its basic form ignores this information and
simply treats areas as abstract classes. To make Naive Bayes more spatially-
aware, we propose to apply the approach outlined in Section 3.1 at multiple
resolutions and combine the results. A classifier working at a higher resolution
will then hopefully find the region containing regions b, c, d to be more likely than
the region containing a. Based on the agreement between fine-grained classifiers
and coarse-grained classifiers, we may then try to find the most appropriate res-
olution for a given photo: in cases of disagreement, coarser results are preferred,
while in cases of strong agreement, fine-grained results may be better suited.

Specifically, let {A1, ...,Ak} be different clusterings of the cities of interest
into disjoint areas, where A1 corresponds to the finest clustering and Ak cor-
responds to the coarsest clustering, i.e. |A1| > |A2| > ... > |Ak|. Furthermore
let Ci be a classifier that was trained to find the area from Ai in which a given
photo was taken. With each area in Ai, we can now associate a set of areas from
the finest level A1. In particular, for a ∈ Ai, we let areas(a) denote the set of
areas from A1 that overlap with area a. In this way, classifications at coarser
resolutions can be seen as incomplete classifications at the finest resolution. For
instance, if classifier Ak suggests that a is the most plausible area, we can take
this as evidence that the correct area, at the finest level, is among those of the
set area(a). Such incomplete conclusions are naturally represented in the theory
of evidence that was proposed by Dempster and Shafer [5, 12]. In Dempster-
Shafer theory, evidence is encoded by a probability distribution on the power
set of the universe. This probability distribution is called a belief function, or
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mass assignment, to distinguish it from probability distributions on the universe
itself.

Obtaining mass assignments In Dempster-Shafer theory, a mass assign-
ment m in the universe U maps any subset of U to a value in [0, 1] such that∑

X⊆U m(X) = 1 and m(∅) = 0. Intuitively, m(X) represents the amount of evi-
dence that the correct value is among those in X. Subsets X such that m(X) > 0
are called focal elements. If all focal elements are disjoint, then m(X) can be
interpreted as the probability that the correct area is among those in X. In
general, two measures of uncertainty are typically defined in Dempster-Shafer
theory, for any X ⊆ U :

Bel(X) =
∑

Y⊆X

m(Y ) Pl(X) =
∑

Y ∩X 6=∅

m(Y )

The degree of belief Bel(X) can be interpreted as a lower bound on the proba-
bility that X contains the correct value, while the degree of plausibility Pl(X)
is an upper bound for this probability.

In the context of this paper, the universe will always be the set of areas
(clusters) in the most fine-grained clustering, viz. the set A1. Let pi(a) be the
probability that classifier Ci has assigned to area a ∈ Ai for the photo under
consideration. Intuitively, we can take this information as evidence that the
correct area, among the fine-grained areas in A1, is among those that overlap
with a, i.e. among those in areas(a). This idea leads to the following mass
assignment corresponding to classifier Ci (X ⊆ A1):

mi(X) =


pi(a) if X = areas(a) for some a ∈ Ai∑

a∈(Ai\Ai)
pi(a) if X = A1

0 otherwise
(2)

where Ai ⊆ Ai is the set of areas that are most likely according to classifier
Ci. In principle, we may take Ai = Ai but there are at least two reasons for
taking Ai to be a much smaller set of areas. The mass assigned to the universe
A1 corresponds to a degree of ignorance, i.e. we only put belief in the most
plausible areas of each classification, and admit that we are ignorant about the
correct area when it turns out that none of the most plausible areas is correct.
The underlying motivation is that Naive Bayes can be useful to find which are
the most likely areas, but that the probability estimates for the remaining areas
are not meaningful. Moreover, restricting attention to a relatively small subset
of areas Ai is a prerequisite for obtaining a sufficiently scalable method. In our
experiments, the set Ai was constructed by adding areas in decreasing order of
likelihood (according to Ci), until

∑
a∈A pi(a) ≥ 0.95.

Note that alternatively, we could also assign the mass
∑

a∈Ai\Ai
pi(a) to Ai \

Ai instead of Ai; we do not consider this possibility, however, in the remainder
of this paper.
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Combining mass assignments An important advantage of using Dempster-
Shafer theory in this context is that it allows to combine evidence from different
sources. In particular, for two mass assignments m and m′ in the universe A1,
the joint mass assignment m⊕m′ is defined using Dempster’s rule of combination
as

(m⊕m′)(∅) = 0 (3)

(m⊕m′)(X) =
∑

Y ∩Z=X m(Y ) ·m′(Z)
1−

∑
Y ∩Z=∅m(Y ) ·m′(Z)

(4)

for any subset ∅ ⊂ X ⊆ A1, and provided that
∑

Y ∩Z=∅m(Y ) ·m′(Z) < 1. It
can be shown that this combination rule is associative. By treating the classifiers
C1, ..., Ck as independent sources, we obtain the following mass assignment:

m = m1 ⊕m2 ⊕ ...⊕mk (5)

Note that the assumption that classifiers C1, ..., Ck are independent sources is a
simplification, as they have essentially been trained on the same data. However,
as different classifiers operate at different resolutions, implying among others
that different tags have been retained by the χ2 method in each case, this sim-
plification appears to be reasonable.

The combination rule (3)–(4) is the combination rule proposed by Dempster.
It is not entirely uncontroversial, however, and in particular when the degree of
conflict

∑
Y ∩Z=∅m(Y ) ·m′(Z) is close to 1, it is reputed to provide counterin-

tuitive results [17]. As an alternative, Yager [16] proposed the following rule for
combining k mass assignments in a universe U (X ⊂ U):

m(X) =
∑

T
i Yi=X

m1(Y1) · ... ·mk(Yk) (6)

m(U) = m1(U) · ... ·mk(U) +
∑

T
i Yi=∅

m1(Y1) · ... ·mk(Yk) (7)

m(∅) = 0 (8)

Clearly, Yager’s combination rule only differs from the one proposed by Dempster
in what happens with the mass

∑
Y ∩Z=∅m(Y ) ·m′(Z) that would normally be

assigned to the empty set. While Dempster’s rule distributes this mass over all
focal elements, leading to an associative operator, in Yager’s rule this mass is
assigned to the universe U . As such, Yager’s rule can be considered more cautious
as the degree of ignorance increases when different sources are in conflict with
each other.

4 Experimental Results

In this section, we present the results of a number of experiments which we
have carried out to compare the performance of the Dempster-Shafer based
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approach with a baseline that uses the probabilities from Naive Bayes in a more
straightforward way.

In a first experiment, we have verified whether we could improve the accuracy
of Naive Bayes by using the combined mass assignment defined by (3)–(4). In
particular, the task consists of choosing one area from the clustering Ai at a
given resolution (k = 54, 250, 500, 1000), and we have compared the following
three methods:

Probability Choose the cluster for which the highest probability was found
using Naive Bayes.

Plausibility Choose the cluster a for which the value of Pl(areas(a)) is maxi-
mal.

Belief Choose the cluster a for which the value of Bel(areas(a)) is maximal.

The result is summarized in Table 1. The evaluation metric that was used is
accuracy, i.e. the percentage of photos in the test set for which the correct area
was found. Clearly, for higher values of k a lower accuracy is generally obtained,
as there are more areas to choose from, and less information is available for each
area. In approximately 87% of the cases, a photo can be assigned to the correct
city, while the correct area at the finest level can only be found in about 40% of
the cases. Comparing the different methods, we find that except for k = 500, us-
ing belief leads to slightly better performance than using probability. Plausibility,
on the other hand, leads to worse performance than probability, except for the
case k = 54. This latter fact is not surprising as for any area a which represents
an entire city, the only focal elements that overlap with this city will actually be
contained in the city, hence Bel(areas(a)) = Pl(areas(a)). Overall, in this task,
the Dempster-Shafer approach does not allow to substantially improve over the
standard Naive Bayes approach.

54 250 500 1000

Probability 0.8694 0.5137 0.4622 0.4126

Plausibility 0.8729 0.4756 0.3838 0.4134

Belief 0.8729 0.5211 0.4457 0.4151

Table 1. Comparing the use of probability, plausibility and belief for finding the area
in which a photo was taken (accuracy).

A second experiment was targeted at evaluating the behavior of the Dempster-
Shafer approach when it comes to finding the right resolution for a given photo.
Here the task is as follows. For a given photo, choose the most appropriate value
of k (54, 250, 500 or 1000) and choose an area from the corresponding clustering.
Accuracy is defined as the percentage of cases in which the true location of the
photo was within the area that was chosen. However, the idea is that as often as
possible, areas should be chosen from the more fine-grained clusterings, while ac-
curacy will clearly be higher when selecting areas from the more coarse-grained
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clusterings. In addition to accuracy, it is therefore important to compare the
average size of the areas that are returned by different methods.

As clusters are simply defined as sets of photos (as opposed to e.g. polygons)
we have measured the size of an area (cluster) in terms of the distance between
the centroid of that cluster and the remaining photos of the cluster. In particular,
for a given area a, represented by the set of photos Xa, the centroid ca of a is
the most central photo, i.e.:

ca = arg min
x∈Xa

∑
y∈Xa

d(x, y)

where d(x, y) is the geodesic distance between the locations of photos x and y.
To measure the size size(a) of area a, we have used the median value of the
set {d(x, ca)|x ∈ Xa}. The size intuitively corresponds to the radius of area a,
if we think of this area as a circle. Note that the median is used, rather than
the maximum or average, because several areas contain outliers, i.e. photos that
are not close to any other photos, and that are added to the cluster centre that
happens to be closest. The median is more robust against such outliers than
the maximum or average, and thus appears to be better suited as an evaluation
measure. As an evaluation criterium, in addition to accuracy, we consider the
average of size(a) over all areas a that were chosen by a particular method.
Ideally, methods should exhibit a high accuracy and a small average size.

The methods that have been compared all follow the same basic strategy.
First, the areas from the clustering corresponding to k = 1000 are ranked. For
the top-ranked area a1, it is checked whether sufficient support is available. If this
is the case, area a1 is returned as the chosen area. If not, the process is repeated
for the clustering at level k = 500 and, if necessary for k = 250. If there is
insufficient support for the top-ranked area a3 at level k = 250, the best area at
level k = 54 is always chosen. Thus our method is parametrized by a ranking
function, a way of measuring support, and a threshold value. The threshold value
will be used to control the trade-off between accuracy and average size. As for
the remaining two parameters, we have compared the following configurations:

Probability Areas are ranked according to the probability that was assigned
to them by the Naive Bayes classifier. This probability value also serves as
a measure of support.

Plausibility Areas a are ranked according to the plausibility degree Pl(areas(a)).
This degree also serves as a measure of support.

Belief Areas a are ranked according to the belief degree Bel(areas(a)). This
degree also serves as a measure of support.

Hybrid Areas a are ranked according to the plausibility degree Pl(areas(a)).
Support is measured as Bel(areas(a)).

The result is depicted in Figure 1. This figure was obtained by varying the value
of the threshold from 0.01 to 0.99 in steps of 0.01. This led, for each of the four
methods, to 99 data points, each of which corresponds to an (accuracy,average
size) pair. After interpolation of these 99 data points, the graphs in Figure 1
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were obtained. Clearly, the three methods based on the combined mass assign-
ment perform substantially better than the method based on the probabilities
of the Naive Bayes classifier. For instance, to obtain an accuracy of 75%, using
the method probability we need to accept an average cluster size of about 2.15
km, whereas this is around 1.5 for the other methods. At lower accuracy levels,
the difference becomes somewhat less pronounced, e.g. an accuracy of 50% cor-
responds to an average cluster size of about 1.15 using the probability method
and a size of about 1 km using the other methods.

Fig. 1. Comparison of the trade-off between accuracy and average cluster size for four
different methods.

Figure 1 is based on the combined mass assignment (5) obtained using Demp-
ster’s rule. As this task is essentially about deciding whether there is enough
support to assign a photo to a cluster at a particular level, Yager’s rule may be
more suitable. Indeed, Dempster’s rule ignores any conflict among the different
levels by normalizing the masses. When using Yager’s rule, on the other hand,
whenever there is conflict, the degrees of belief and plausibility will have lower
values. This will lead to photos being assigned to areas of coarser clusterings.
In Figure 2, the result of the hybrid method is depicted when using either the
combined mass assignment (5) based on Dempster’s rule or the combined mass
assignment (6)–(8) based on Yager’s rule. The most important conclusion is that
the graph corresponding to Yager’s rule is to the left of the graph corresponding
to Dempster’s rule. This is indeed in accordance with the cautious nature of the
method: photos tend to be assigned to coarser levels, leading to higher accuracy
at the cost of a higher average size. For the accuracies attained by both methods,
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i.e. the accuracies in the interval [0.47, 0.78], Yager’s rule and Dempster’s rule
perform comparably, with Dempster’s rule performing slightly better.

Fig. 2. Comparison the performance of Dempster’s and Yager’s rule of combination.

5 Related Work

Some authors have already studied the task of georeferencing photos based on
clustering. One such approach is presented in [4], where target locations are
determined using mean shift clustering, a non-parametric clustering technique
from the field of image segmentation. The advantage of this clustering method is
that an optimal number of clusters is determined automatically, requiring only
an estimate of the scale of interest. Specifically, to find good locations, the dif-
ference is calculated between the density of photos at a given location and a
weighted mean of the densities in the area surrounding that location. To assign
locations to new images, both visual (keypoints) and textual (tags) features were
used. Experiments were carried out on a sample of over 30 million images, using
both Bayesian classifiers and linear support vector machines, with slightly better
results for the latter. Two different resolutions were considered corresponding to
approximately 100 km (finding the correct metropolitan area) and 100 m (find-
ing the correct landmark). It was found that visual features, when combined
with textual features, substantially improve accuracy in the case of landmarks.
In [7], an approach is presented which is based purely on visual features. For
each new photo, the 120 most similar photos with known coordinates are deter-
mined. This weighted set of 120 locations is then interpreted as an estimate of a
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probability distribution, whose mode is determined using mean-shift clustering.
The resulting value is used as prediction of the image’s location. Using k-means
to spatially cluster geotagged Flickr images has been proposed in [1], where the
clusters are used to find representative textual descriptions of each area. The
goal is to visualize these textual descriptions on a map, to assist users in finding
images of interest.

The idea that when georeferencing images, the spatial distribution of the
classes (areas) could be utilized to improve accuracy has already been suggested
in [11]. Their starting point is that typically not only the correct area will receive
a high probability, but also the areas surrounding the correct area. Indeed, the
expected distribution of tags in these areas will typically be quite similar. Hence,
if some area a receives a high score, and all of the areas surrounding a also receive
a relatively high score, we can be more confident in a being approximately correct
than when all the areas surrounding a receive a low score. Motivated by this
intuition, [11] proposes to smooth P (a|x) as follows (using a uniform prior):

P ∗(a|x) ∝ αP (x|a) + (1− α) ·
∑

b∈neighd(a)

P (x|b)
(2d+ 1)2 − 1

where d > 0 and neighd(a) is the set of all areas that are within distance d of a.
Some Flickr tags are intuitively more important than others in determining

the location of a photo. Toponyms in particular are by definition indicative of
geographic location. One way of recognizing toponyms is by looking for so-called
comma-groups. These are groups of words that are comma-separated, e.g. San
Francisco, California, USA. In this example, there is a clear relationship between
the comma-separated values, as San Francisco is a city, located in the state of
California, which is in turn one of the states of the USA. As a result, resolution
of the toponyms represented by this group reveals an unambiguous geographical
reference. Resolution of such comma-groups has been studied by Lieberman in
[9]. In [8], Hollenstein studied the way people tag images in order to discover how
people refer to a location. She found that the city toponym was by far the most
essential reference to a specific location. This is in accordance with our results,
where we have also found classification accuracies to be particularly high for the
city level. It was furthermore shown in [8] that the average user has a distinct
idea of specific places, their location and extent. Despite this tagging behaviour,
Hollenstein concluded that the data available in the Flickr database meets the
requirements to generate spatial footprints at a sub-city level.

Various authors have investigated the use of Dempster-Shafer theory for com-
bining the results of different classifiers [2, 6, 10, 15]. However, the aim of using
Dempster-Shafer theory in this context is quite different from our aim in this
paper. Specifically, these methods mainly use Dempster-Shafer theory for its
ability to represent partial ignorance. For instance, if a given classifier assigns a
probability pi to each class ci, a belief function may be constructed by choosing
m({ci}) = fi for some fi < pi, and m(C) = 1 −

∑
i fi, for C = {c1, ..., cn} the

set of all classes. The value 1−
∑

i fi can then intuitively be interpreted in terms
of confidence in the associated classifier. Note also that all focal elements are
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then either singletons or the universe, which makes Dempster-Shafer theory suf-
ficiently scalable to deal with large numbers of classes, although sometimes focal
elements of the form C \ {ci} are also used. In [3], Dempster-Shafer theory is
used for retrieving images of people, combining evidence from a face recognition
module and a classifier based on textual descriptions; again only singletons and
the entire universe are considered as focal elements.

6 Conclusions

We have studied the problem of finding the geographic location of a photo, par-
ticularly emphasizing the importance of determining the appropriate resolution
for any given photo. While the precise location of some photos can easily be es-
tablished, for other photos we can only hope to find a rough idea of where it was
taken. Our basic approach consists of clustering the part of geographic space
that is of interest, and use standard machine learning techniques (viz. Naive
Bayes) to find the cluster which is most likely to contain the correct location
of a photo. By varying the number of clusters, different classifiers are obtained
which operate at different resolutions.

While adaptive methods, heuristically choosing the most appropriate resolu-
tion, can be obtained by straighforwardly analyzing the outputs of these different
classifiers, a significant gain in performance is obtained by first combining these
outputs using Dempster-Shafer’s evidence theory. Experimental results have in-
dicated that the belief and plausibility measures induced by the resulting mass
assignment are particularly suitable for determining whether sufficient support
is available to classify a photo at a given resolution.
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