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ABSTRACT
We explore the task of automatically assigning geographic
coordinates to photos on Flickr. Using an approach based
on k-medoids clustering and Naive Bayes classification, we
demonstrate that the task is feasible, although high accuracy
can only be expected for a portion of all photos. Based
on this observation, we stress the importance of adaptive
approaches that estimate locations at different granularities
for different photos.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Miscellaneous; H.3.7
[INFORMATION STORAGE AND RETRIEVAL]:
Digital libraries

General Terms
Algorithms, Experimentation

Keywords
Georeferencing, Web 2.0, Naive Bayes classification

1. INTRODUCTION
In recent years, tagging has emerged as one of the most

prominent techniques to organize online collections of re-
sources, such as photos, videos, bookmarks or scientific pa-
pers. Typically, users add tags (short textual descriptions)
to resources they find interesting to bring structure into a
collection, to facilitate retrieval, or to help others find these
resources more easily, among others [2]. As a result, a rich
description of the content of these resources can be obtained
by statistically analyzing which tags are assigned by which
users to which resources. This observation has led to tech-
niques to automatically generate ontological knowledge [16],
to improve the performance of retrieval systems [10], or to
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assist users with the burden of finding the right tag to add
to a new resource [15].

In the case of photos, geographic location forms one of
the most important forms of metadata. Accordingly, online
repositories such as Flickr1 or Panoramio2 offer the possibil-
ity to explicitly associate geographic coordinates to photos.
These coordinates are typically obtained through GPS de-
vices that are integrated in digital cameras, or by the users
indicating on a map where a photo was taken.

Analyzing the distribution of tags appearing in such large
collections of georeferenced photos has been found extremely
useful, for instance to model the spatial extent of vernacular
places [9] or to discover toponyms [12]. Since the quality of
results that are thus obtained depends crucially on the num-
ber of available georeferenced photos, the question arises of
whether we can leverage the current geographic metadata to
approximately localize photos in an automated way. This
would allow to add approximate coordinates to the vast
number of photos on Flickr that are currently not georef-
erenced, and would moreover allow to build more “friendly”
user interfaces that attempt to zoom a map at the right place
at the right level when users are trying to manually indicate
where the photo was taken. In this paper, we present an ap-
proach to automatically find where a photo was taken, based
on k-medoids clustering and Naive Bayes classification. We
attempt to discover both in which city the photo was taken,
and where it was taken within that city.

The paper is structured as follows. In the next section, we
outline the procedure we have followed to construct training
and test data, and explain the preprocessing steps we per-
formed. Next, Section 3 explains how a Naive Bayes classi-
fier could be used for the task of georeferencing Flickr pho-
tos, and contains our main experimental results. In Section
4, we discuss the implications of these experimental results
and, in particular, stress the importance of adaptive tech-
niques that make predictions at the right level of granularity,
depending on how much information is available for a given
photo. We sketch an approach to implement such adaptive
behavior, based on Dempster-Shafer theory and possibility
theory. Finally, an overview of related work is presented in
Section 5, after which our conclusions are presented.

2. OBTAINING THE DATA
In our experiments, we have restricted ourselves to 55

large European cities. These cities were chosen by inter-
secting the set of 100 most densely populated European

1http://www.flickr.com/
2http://www.panoramio.com/



Table 1: Number of photos in the training set for each city that was considered in experiments.
name training name training name training name training
Amsterdam 19601 Dusseldorf 2858 Lyon 4002 Rotterdam 5766
Antwerp 5150 Frankfurt 4589 Madrid 16540 Seville 4495
Athens 139 Genoa 2635 Malaga 1938 Skopje 143
Barcelona 29648 Glasgow 6966 Marseille 2837 Sofiya 37
Belgrade 426 Gothenburg 4143 Milan 16605 Stockholm 11196
Berlin 30695 Hamburg 10779 Moscow 5497 Stuttgart 3681
Birmingham 3707 Hanover 2514 Munich 11844 Turin 6093
Bremen 0 Helsinki 7384 Naples 3133 Valenza 5674
Bruxelles 5668 Istanbul 8390 Nuremberg 1420 Vienna 13982
Budapest 9376 Copenhagen 1837 Oslo 5941 Vilnius 747
Cologne 7957 Leipzig 2394 Palermo 1685 Warsaw 6146
Krakow 3419 Lisbon 975 Paris 72763 Zagreb 1425
Dresden 2783 Liverpool 4946 Prague 11790 Zaragoza 2568
Dublin 20449 London 188077 Rome 25120

cities3 with the set of 160 most important European cities for
tourism4. Intuitively, a high population should ensure that
allocating photos to locations is non-trivial (as opposed to
villages where all activity is centered around a small area),
while tourist activity should ensure that a sufficient number
of photos is available on Flickr. For each georeferenced photo
in these cities, we collected the corresponding tags and co-
ordinates using the Flickr API, leading to a total of 3738072
photos. In addition to the coordinates themselves, Flickr
provides information about the accuracy of coordinates as a
number between 1 (world-level) and 16 (street level). From
our initial set of photos, we removed those photos whose
coordinates had an accuracy of 13 or less, to ensure that
all coordinates were meaningful w.r.t. within-city location.
Furthermore, we removed photos whose tag set and user
name was identical to a photo that is already in our collec-
tion (to reduce the impact of bulk uploads [13]). After these
two filtering steps, a set of 1029761 photos remained, which
we split into 686193 photos for training (≈ 66%) and 343568
photos for testing (≈ 33%), such that all photos from the
same user were either in the training set, or in the test set
(to avoid an unfair exploitation of user-specific tags). Table
1 displays the 55 cities we considered, as well as the number
of photos in the training set, for each city. Note that no pho-
tos were kept for Bremen; as it turns out, the coordinates
for all photos in Bremen have an accuracy of less than 13.

To interpret the process of georeferencing photos as a clas-
sification task, we first divided the 55 cities into a set of
disjoint areas that will serve as classification labels. These
areas were obtained by clustering the locations of the pho-
tos in the training set using the k-medoids algorithm with
geodesic distance. The k-medoids algorithm was preferred
over the k-means algorithm as it handles the occurence of
outliers better. We have experimented with three different
values of the total number of areas k: 250, 500 and 1000.
In each case, we imposed that the number of cluster centra
per city was proportional to the number of georeferenced
photos we had available for that city, while ensuring that
every city still contained at least one cluster centre. As a
result, cities for which we had only few georeferenced pho-
tos were divided in areas of a larger scale. This conforms to

3http://www.nga.mil
4http://www.visiteuropeancities.info

our intuition that we should try to be precise in estimating
the location of a photo only when sufficient information is
available for making that decision. In addition, whenever
the number of photos in a given cluster dropped below 50,
after an iteration of the k-medoids algorithm, that cluster
was eliminated and the associated photos added to the near-
est remaining cluster. The actual number of areas after the
clustering algorithm had converged was 217, 401 and 677.
The actual clusters are visualized in Figure 1 for the case of
London. In this figure, cluster centra are plotted as black
dots, while all photos belonging to a cluster are connected
to the centre of its cluster by means of a line. The panel on
which the figure is plotted is a bounding box for the actual
coordinates of the photos of London. This bounding box is
scaled down and distances between photos in the figure thus
represent relative (geodesic) distances.

For efficiency, and to increase the robustness of the ap-
proach, we removed all tags that were used by 2 users or
less. Next, we applied χ2 feature selection to eliminate tags
that are not indicative of a particular area. Let A be the
set of areas that is obtained after clustering. Then for each
area a in A and each tag t occurring in photos from a, the
χ2 statistic was calculated as follows:

χ2(a, t) =
(Ota − Eta)2

Eta
+

(Ota − Eta)2

Eta
+

(Ota − Eta)2

Eta

+
(Ota − Eta)2

Eta

where Ota is the number of photos in area a where tag t
occurs, Ota is the number of photos outside area a where tag
t occurs, Ota is the number of photos in area a where tag
t does not occur, and Ota is the number of photos outside
area a where tag t does not occur. Furthermore, Eta is
the number of occurrences of tag t in photos of area a that
could be expected when occurrence of t were independent
of the location in area a, i.e. Eta = N · P (t) · P (a) with N
the total number of photos, P (t) the percentage of photos
containing tag t and P (a) the percentage of photos that are
located in area a; similarly, Eta = N · P (t) · (1 − P (a)),
Eta = N · (1 − P (t)) · P (a), Eta = N · (1 − P (t)) · (1 −
P (a)). The vocabulary V that was used for classification
was then obtained by taking for each area a the 25 tags
with highest χ2 value. This led to a total number of 1269,



Table 2: Most informative tags according to the χ2 statistic for the area in which resp. the Sagrada Familia
and Eiffel tower are located. Results are shown for the clusterings in 250, 500 and 1000 areas, as well as for
the case where areas are simply the 55 cities.

Sagrada Familia
city 250 500 1000

1 barcelona sagradafamilia sagradafamilia sagradafamilia
2 catalunya sagrada sagrada sagrada
3 spain familia gaudi gaudi
4 catalonia gaudi familia sagradafam??lia
5 gaudi barcelona sagradafam??lia familia
6 catalu?śa lasagradafamilia lasagradafamilia lasagradafamilia
7 bcn sagradafam??lia barcelona barcelona
8 sagradafamilia spain abstraccion templeexpiatoridelasagradafam??lia
9 barcellona gaud?? formas gaud??
10 espa?śa abstraccion gaud?? spain

Eiffel tower
city 250 500 1000

1 paris eiffeltower eiffeltower eiffeltower
2 france eiffel eiffel eiffel
3 louvre toureiffel toureiffel toureiffel
4 eiffel paris paris paris
5 eiffeltower france champdemars tower
6 francia champdemars france france
7 parigi tower tower tour
8 seine tour tour torreeiffel
9 london torreeiffel torreeiffel champdemars
10 notredame champsdemars champsdemars latoureiffel

4701, 8452 and 13727 distinct tags, respectively in the case
where k was 55 (i.e. taking the cities as areas), 250, 500
and 1000. In Table 2, the 10 highest scoring tags are shown
for two well known tourist sites: the Sagrada Familia in
Barcelona, Spain, and the Eiffel tower in Paris, France. In
both cases, the first column contains the tags that allow
to predict the corresponding cities, i.e. not the actual area
around the landmarks. The right-most column contains the
tags that allow to predict the immediate area around the
landmarks. Unsurprisingly, most of the tags that are found
correspond to toponyms and tags that directly refer to the
names of the actual landmarks, although there are some
notable exceptions (e.g. gaudi, abstraccion). Finally, it is
interesting to note that preliminary experiments suggested
a clear supriority for χ2 over mutual information for this task
[11], another well known technique for feature selection.

3. ANALYZING TAG DISTRIBUTIONS

3.1 Naive Bayes
Let A be a set of (disjoint) areas, and for each area a ∈ A,

let Xa be a set of images that were taken in that area. Given
a previously unseen image x, we may then try to determine
in which area x was most likely taken. In this paper, we use
a (multinomial) Naive Bayes classifier to this end, which has
the advantage of being simple, efficient, and robust. Initial
results in [11] have shown good results for this multinomial
classifier. An additional advantage, which will be exploited
in the discussion below, is the fact that the output of this
classifier, in contrast to e.g. support vector machines, can
be interpreted as probabilities. Specifically, we assume that
an image x is represented as its set of tags. Using Bayes’

rule, we know that the probability P (a|x) that image x was
taken in area a is given by

P (a|x) =
P (a) · P (x|a)

P (x)

Using the fact that the probability P (x) of observing the
tags associated with image x is fixed among all areas a, we
find

P (a|x) ∝ P (a) · P (x|a)

Characteristic of Naive Bayes is the assumption that all fea-
tures are independent. Translated to our context, this means
that the presence of a given tag does not influence the pres-
ence or absence of other tags. Writing P (t|a) for the prob-
ability of a tag t being associated to an image in area a, we
find

P (a|x) ∝ P (a) ·
Y
t∈x

P (t|a)

Using a multinomial language model and Laplace smooth-
ing, the probability P (t|a) is estimated as

P (t|a) =
Nt + 1“P

y∈Xa
|y|
”

+ |V |

where Nt is the number of images in area a containing tag
t,
P

y∈Xa
|y| is the total number of tag occurrences over all

images in area a, and V is the vocabulary, as before. For
the prior probability P (a) of area a, the maximum likelihood
estimate can be used:

P (a) =
|Xa|P

b∈A |Xb|



Table 3: Evaluation results for the four classifiers
for the entire test data.

Acc MRR Dist
Ccity 86.9% 0.89 2.60 km
C250 51.4% 0.61 1.55 km
C500 46.3% 0.56 1.39 km
C1000 41.2% 0.51 1.29 km

Typically, as result of the classification, the most likely area
is chosen. After moving to log-space to avoid numerical
underflow, this leads to:

a∗ = arg max
a∈A

(logP (a) +
X
t∈x

logP (t|a))

3.2 Experimental Results
To evaluate the performance of the approach outlined

above, we determined the most plausible area for each photo
in the test set for four different classifiers, viz. the Naive
Bayes classifiers trained at the city level, and at the sub-city
level using the 250-area, 500-area and 1000-area clusterings.
Let us call these classifiers Ccity, C250, C500 and C1000. To
evaluate how good each of these classifiers is at predicting
the right location of photos, we use the following measures

Acc (accuracy): the percentage of photos for which the
most plausible area (according to Naive Bayes) was
the correct one, i.e. the area in which the photo was
actually taken.

MRR (mean reciprocal rank): the average of 1
R

where for
each photo, R is the position at which the correct area
is found when ranking all areas according to the prob-
ability predicted by Naive Bayes. For instance, a MRR
of 0.5 means that on average, the correct area is the
second most plausible area according to Naive Bayes.

Dist (median distance): the median of the distance between
the predicted location and the actual place where the
photo was taken.

Note that the last measure does not compare the area that
was predicted with the correct area, but actual locations.
As predicted location, we take the medoid of the area (or
cluster) that was considered most plausible by Naive Bayes.
Accuracy and mean reciprocal rank are well-known evalu-
ation measures from the fields of machine learning and in-
formation retrieval. The reason we also need to look at the
median distance is because this is what really matters in
most applications, and this is also the only measure that
allows us to compare the results of classifiers that work at
different granularity levels. Indeed, by decreasing the num-
ber of classes, it is clear that accuracy will most probably
increase. Also note that the median distance is more infor-
mative than average distance here, because of its robustness
to outliers.

The main results of our evaluation are presented in Table
3. Interestingly, for almost 87% of the photos in the test set,
the city could be determined correctly. When considering
finer granularity levels, this accuracy decreases to slightly
more than 41% for the 1000-area clustering. This decrease
in accuracy is what could be expected. What is important,
however, is that the median distance between the predicted

Table 4: Evaluation results for the four classifiers,
when restricted to photos having at least one tag
associated to them from the vocabulary V .

Acc MRR Dist
Ccity 98.3% 0.99 1.89 km
C250 59.6% 0.70 1.17 km
C500 51.9% 0.63 1.07 km
C1000 45.1% 0.56 1.04 km

Table 5: Evaluation results for the four classifiers,
when restricted to photos having t least 6 distinct
tags associated to them from the vocabulary V .

Acc MRR Dist
Ccity 99.1% 0.99 1.54 km
C250 76.1% 0.84 0.66 km
C500 66.4% 0.76 0.6 km
C1000 56.4% 0.67 0.6 km

location and the correct location is smallest when the granu-
larity level is finest. The reason for the poorer performance
at the city-level, for instance, is because the distance be-
tween the centre of the city and the place where the photo
was taken can be quite large, even when the predicted city is
correct. Although the predicted area at the finest granular-
ity level is incorrect more often than not, the small median
distance suggests that the predicted area still tends to be
in the vicinity of the correct area. Similar conclusions can
be drawn from the high values of the MRR measure: even
at the finest granularity level, the correct area is usually
among the top ranked areas (around the second position in
the ranking, on average).

When analyzing the photos for which the prediction was
wrong, we found that a large part of these photos did not
have any tags from the vocabulary V . Thus, presence or
absence of terms from the vocabulary provides useful infor-
mation on whether or not we can localize a photo. In Table
4, the results are shown when restricted to those photos that
have at least one tag from the vocabulary. Surprisingly, ac-
curacy increases to 98%. This means that, in general, either
we know that insufficient information is available to localize
the photo, or we can reliably find the correct city. Taking
this idea one step further, Table 5 contains the results when
we restrict ourselves to photos that have at least 6 distinct
tags from the vocabulary. Again a substantial improvement
is witnessed; e.g. when using the finest granularity, half of
the photos is localized with an error of less than 0.6 km.
This suggests that the number of tags from the vocabulary
that are associated to a photo can be a useful indication to
assess the confidence we should put in a prediction.

4. DISCUSSION
The experimental results obtained above are encouraging

on one hand, as it turns out that a substantial number of
photos can be localized with a reasonable precision. On
the other hand, there is still a large number of photos for
which the predicted location is wrong. Although it may be
possible to improve performance by using more advanced
techniques, such as smoothing, the main conclusions will



most likely remain. For example, [13] proposes to smooth
P (a|x) as follows (using a uniform prior):

P ∗(a|x) ∝ αP (x|a) + (1− α) ·
X

b∈neighd(a)

P (x|b)
(2d+ 1)2 − 1

where d > 0 and neighd(a) is the set of all areas that are
within distance d of a. Although experimental results con-
firm an improvement using such techniques, the gain in ac-
curacy is not substantial. The main reason is that available
tags for many photos are simply not informative enough to
allow a location to be found, not even for human readers.

Clearly, if automated georeferencing of photos is to be
used in practical applications, it becomes paramount that
not all photos are treated in the same way. When clustering
the cities into areas, we already emphasized the importance
of having larger areas (clusters) in parts of cities for which
less information is available. Similarly, when the tags asso-
ciated to a photo are not sufficient to accurately predict its
location, we should not attempt to “guess” a location any-
way. Thus, in addition to finding the most likely location of
a photo, we face the challenge of determining the appropri-
ate granularity of the prediction that is reported to the user.
If we are only certain about the city where the photo was
taken, then this is all that should be concluded. If we are not
even certain about the city, then perhaps nothing should be
concluded. Below we outline two orthogonal ways to make
the georeferencing process more adaptive in this sense.

4.1 Multi-scale Classification
Deciding when a city-level prediction is most appropriate

and when a smaller-scale prediction is most appropriate is
not an easy task. An interesting strategy, however, might be
to make use of the fact that classifiers can be trained at dif-
ferent resolutions. Specifically, let {A1, ...,Ak} be different
clusterings of the cities of interest into disjoint areas, where
A1 corresponds to the finest clustering and Ak corresponds
to the coarsest clustering, i.e. |A1| > |A2| > ... > |Ak|.
Then every area a from Ai, i ≥ 2, naturally correspond
to a set areas(a) of areas from the finest clustering A1. If
the classifier that was trained on Ai then suggests area a
as most likely location, with probability p, we can take this
as evidence that the correct location, at the finest level, is
among the areas in areas(a). Thus the results of all classi-
fiers can be interpreted as probability distributions on sets
of areas from A1. Such a probability distribution on the
powerset of a universe is usually called a belief function or
mass assignment, and forms the basis of the evidence theory
of Dempster and Shafer [14].

Using Dempster-Shafer theory, the results from the clas-
sifiers at all levels of granularity can be fused into one be-
lief function. Since predictions are now sets of areas, this
approach has the potential of justifying when enough evi-
dence is available to conclude that the photo was taken in
a specific area, and when evidence only allows to conclude
in which city the photo was taken (or not even to predict
the correct city). There are a wide number of ways in which
this idea can be implemented, and a detailed study of us-
ing Dempster-Shafer theory in this context is left for future
work. In each case, however, the intuition will be that when
a is the area predicted at the finest level, and the city in
which a is located is found to be unlikely by a classifier work-
ing at the city level, then the plausibility of a significantly
decreases. In other words, the central idea is that agreement

between different classifiers, trained with different features
and operating at different levels of granularity, is a strong
indication for the precision at which the right location can
be predicted, in addition of course to the confidence each
classifier on its own has in the prediction it makes.

4.2 Possibilistic Predictions
A second idea, when trying to make the result of the clas-

sification more adaptive, is to use a richer representation
than (sets of) areas to encode the result. When reporting
back to end-users, a probability distribution can easily be
displayed as a heat map, for instance. Even when the pre-
diction is used as input to other techniques, e.g. learning the
spatial extent of vernacular places, probability distributions
(or belief functions) could be more useful than just know-
ing the most plausible location. However, using probability
distributions in this way has at least three disadvantages:

1. The amount of space needed for storing an entire prob-
ability distribution for every image of interest is pro-
hibitively high, being linear in both the number of ar-
eas considered and the number of images that are an-
alyzed. This is especially true when the total number
of images is large, resolution is fine-grained and when
any part of the globe is considered a priori (rather than
a restricted set of cities or countries).

2. It is well-known that Naive Bayes does not produce
well-calibrated probability estimates [3]. On the other
hand, there is empirical and theoretical evidence that
Naive Bayes can successfully be used to find the most
probable outcome [5], or to rank different outcomes
according to their degree of plausibility [17]. Thus it
makes sense to convert the probabilities obtained using
Naive Bayes to a weaker model of uncertainty, focus-
ing on the qualitative ordering that is obtained, rather
than on the actual values of the probabilities.

3. The probability distribution obtained by Naive Bayes
will typically be too chaotic to adequately visualize the
uncertainty associated to the prediction of a photo’s
location. Ideally, the visualization should be simple
enough for the user the grasp immediately how much
is known about the location of a photo, and where it
was most likely taken.

As an alternative, we propose to approximate the mass as-
signment obtained from the Dempster-Shafer approach that
was outlined above (or even the probability distributions
obtained from a single classifier), as a weighted collection
of nested areas. Formally, let X1, ..., Xn be areas of dif-
ferent granularity, represented as sets of areas at the finest
level, i.e. Xi ⊆ A1. Assume furthermore that X1 ⊆ ... ⊆
Xn = A1, and let wi be a weight attached to Xi, where
0 < w1 ≤ ... ≤ wn = 1. Intuitively, wi reflects our certainty
that the correct location is in Xi. Since Xn covers all areas,
we are completely certain that it also contains the correct
area, i.e. wn = 1. In general, wi can be calculated from a
mass assignment m as

w1 =
X

Y⊆X1

m(Y )



and for i ≥ 2,

wi =
X

Y⊆Xi
Y 6⊆Xi−1

m(Y )

Note that {X1/w1, ...., Xn/wn} is a mass assignment in which
all the sets with a non-zero mass (i.e. the focal elements) are
nested sets. Such mass assignments are called consonant,
and can be represented as a A1 − [0, 1] mapping π, i.e. a
possibility distribution in A1, without loss of information.
For each a ∈ A1, we define

π(a) =

8>>>>>>>><>>>>>>>>:

1 if a ∈ X1

1− w1 if a ∈ X2 \X1

...

1−
Pl−1

i=1 wi if a ∈ Xl \Xl−1

...

wn if a /∈ \Xn−1

This technique of approximating mass assignments was pro-
posed in [6], where π is called the outer approximation of m.
The advantage now is that π can easily be visualized as a
heat map. Finding good visualizations, and indeed, good ap-
proximations of our beliefs, thus boils down to choosing good
definitions of the sets X1, X2, ..., Xn. These are definitions
for which the resulting possibility distribution π is maxi-
mally informative, i.e. for which the weight wi of small-scale
regions Xi (i.e. for small values of i) is as high as possible.
Various options exist to measure the degree of informative-
ness of a possibility distribution [7]. One idea might be to
take n = k, and for each i, choose Xi among the focal el-
ements of m from Ai, such that the following expression is
minimized: X

a∈A1

area(a) · π(a)

where area(a) denotes the area of the spatial extent of a.

5. RELATED WORK
By far the most similar work to ours is [13], where a lan-

guage modeling approach is used to predict the location of
Flickr images based on their tags. To discretize the earth’s
surface, rectangles are used, each of which is defined as a set
of locations with identical coordinates up to a fixed number
of decimals. The length of the sides of the rectangles, in
different experiments, ranges from about 1 km to more than
100 km, hence a substantially coarser granularity is assumed
than in our experiments. Experiments are performed on a
random sample of about 400 000 Flickr images, 140 000 of
which are actually considered after removing images from
the same user with identical tag sets. To improve the stan-
dard multinomial language model, the spatial distribution of
the areas is used for smoothing, and boosting is applied to
tags that are known to be (unambiguous) toponyms. These
techniques are shown to lead to a significant performance in-
crease, although accuracy (and related performance metrics)
remain in the same order of magnitude.

Another related approach is presented in [4], where tar-
get locations are determined using mean shift clustering, a
non-parametric clustering technique from the field of image
segmentation. The advantage of this method is that an opti-
mal number of clusters is determined automatically, requir-
ing only an estimate of the scale of interest. Specifically, to

find good locations, the difference is calculated between the
density of photos at a given location and a weighted mean
of the densities in the area surrounding that location. To
assign locations to new images, both visual (keypoints) and
textual (tags) features were used. Experiments were car-
ried out on a sample of over 30 million images, using both
Bayesian classifiers and linear support vector machines, with
slightly better results for the latter. Two different resolu-
tions were considered corresponding to approximately 100
km (finding the correct metropolitan area) and 100 m (find-
ing the correct landmark). It was found that visual features,
when combined with textual features, substantially improve
accuracy in the case of landmarks. In [8], an approach is
presented which is based purely on visual features. For each
new photo, the 120 most similar photos with known coordi-
nates are determined. This weighted set of 120 locations is
then interpreted as an estimate of a probability distribution,
whose mode is determined using mean-shift clustering. The
resulting value is used as prediction of the image’s location.

Using k-means to spatially cluster geotagged Flickr images
has been proposed in [1], where the clusters are used to find
representative textual descriptions of each area. The goal
is to visualize these textual descriptions on a map, to assist
users in finding images of interest.

6. CONCLUSIONS
We have proposed an approach to find the approximate

location of photos on Flickr. After clustering the regions of
interest into disjoint areas, a vocabulary of relevant features
is compiled using the well-known χ2 statistic. This vocabu-
lary is then used to train a Naive Bayes classifier that can
be used to predict the area in which previously unseen pho-
tos were taken. The results that were obtained in this way
are encouraging, suggesting among others that predicting
the city where a photo was taken can be done very reliably.
Even at finer resolutions, the correct area is almost always
among the areas that are considered most plausible by the
Naive Bayes classifier. On the other hand, we have stressed
the importance of adaptive techniques that are aware of the
spatial granularity that is meaningful for a given photo. As
a first step towards such techniques, we have found that the
number of tags for a given photo that appear in the vocabu-
lary is a useful indicator of how likely the predicted location
will be (approximately correct). Finally, we have outlined a
more advanced technique to make the overall approach more
adaptive, based on Dempster-Shafer theory and possibility
theory.
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(a) 250 area clustering

(b) 500 area clustering

(c) 1000 area clustering

Figure 1: Clustering obtained for London when the
total number of clusters (over all cities) was 250, 500
and 1000.


